Distributed Consensus With Limited Communication Data Rate
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملDistributed SAGA: Maintaining linear convergence rate with limited communication
In recent years, variance-reducing stochastic methods have shown great practical performance, exhibiting linear convergence rate when other stochastic methods offered a sub-linear rate. However, as datasets grow ever bigger and clusters become widespread, the need for fast distribution methods is pressing. We propose here a distribution scheme for SAGA which maintains a linear convergence rate,...
متن کاملDistributed dynamic consensus under quantized communication data
Distributed dynamic average consensus is investigated under quantized communication data. We use a uniform quantizer with constant quantization step-size to deal with the saturation caused by the dynamic consensus error and propose a communication feedback-based distributed consensus protocol suitable for directed time-varying topologies to make the internal state of each agent’s encoder consis...
متن کاملDistributed Mean Estimation with Limited Communication
Motivated by the need for distributed learning and optimization algorithms with low communication cost, we study communication efficient algorithms for distributed mean estimation. Unlike previous works, we make no probabilistic assumptions on the data. We first show that for d dimensional data with n clients, a naive stochastic rounding approach yields a mean squared error (MSE) of ⇥(d/n) and ...
متن کاملDistributed Bayesian Matrix Factorization with Limited Communication
Bayesian matrix factorization (BMF) is a powerful tool for producing low-rank representations of matrices and for predicting missing values and their confidence intervals. Scaling up the posterior inference for massive-scale matrices is challenging and requires distributing both data and computation over many workers, making communication the main computational bottleneck. Embarrassingly parall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2011
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2010.2052384